FP1 Conics Questions

- 8 A curve has equation $y^2 = 12x$.
 - (a) Sketch the curve.
 - (b) (i) The curve is translated by 2 units in the positive *y* direction. Write down the equation of the curve after this translation. (2 marks)
 - (ii) The **original** curve is reflected in the line y = x. Write down the equation of the curve after this reflection. (1 mark)
 - (c) (i) Show that if the straight line y = x + c, where c is a constant, intersects the curve $y^2 = 12x$, then the x-coordinates of the points of intersection satisfy the equation

$$x^{2} + (2c - 12)x + c^{2} = 0 (3 marks)$$

- (ii) Hence find the value of c for which the straight line is a tangent to the curve. (2 marks)
- (iii) Using this value of c, find the coordinates of the point where the line touches the curve. (2 marks)
- (iv) In the case where c = 4, determine whether the line intersects the curve or not. (3 marks)
- 7 (a) Describe a geometrical transformation by which the hyperbola

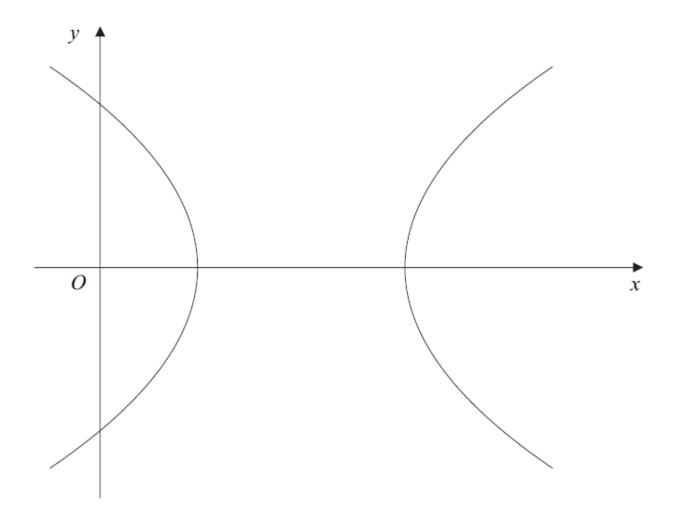
$$x^2 - 4y^2 = 1$$

can be obtained from the hyperbola $x^2 - y^2 = 1$. (2 marks)

(b) The diagram shows the hyperbola H with equation

$$x^2 - y^2 - 4x + 3 = 0$$

(2 marks)



By completing the square, describe a geometrical transformation by which the hyperbola *H* can be obtained from the hyperbola $x^2 - y^2 = 1$. (4 marks)

8 A curve C has equation

$$\frac{x^2}{25} - \frac{y^2}{9} = 1$$

- (a) Find the *y*-coordinates of the points on *C* for which x = 10, giving each answer in the form $k\sqrt{3}$, where *k* is an integer. (3 marks)
- (b) Sketch the curve *C*, indicating the coordinates of any points where the curve intersects the coordinate axes. (3 marks)
- (c) Write down the equation of the tangent to C at the point where C intersects the positive *x*-axis. (1 mark)

(d) (i) Show that, if the line y = x - 4 intersects *C*, the *x*-coordinates of the points of intersection must satisfy the equation

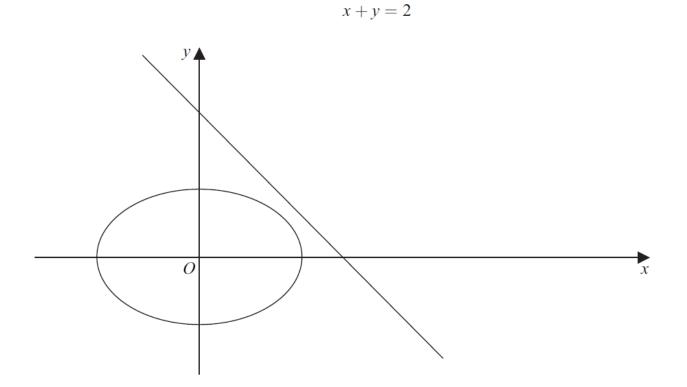
$$16x^2 - 200x + 625 = 0 (3 marks)$$

- (ii) Solve this equation and hence state the relationship between the line y = x 4and the curve *C*. (2 marks)
- 9 [Figure 3, printed on the insert, is provided for use in this question.]

The diagram shows the curve with equation

$$\frac{x^2}{2} + y^2 = 1$$

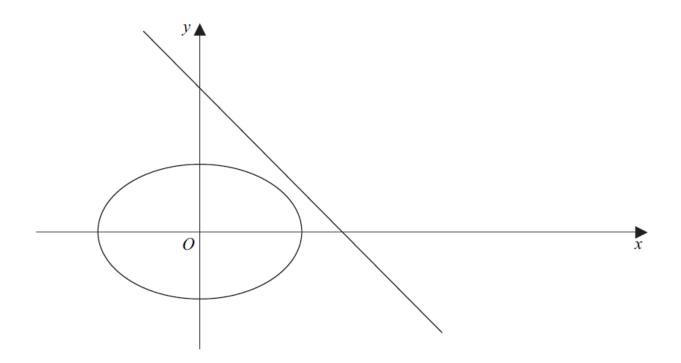
and the straight line with equation



- (a) Write down the exact coordinates of the points where the curve with equation $\frac{x^2}{2} + y^2 = 1$ intersects the coordinate axes. (2 marks)
- (b) The curve is translated k units in the positive x direction, where k is a constant. Write down, in terms of k, the equation of the curve after this translation. (2 marks)
- (c) Show that, if the line x + y = 2 intersects the **translated** curve, the *x*-coordinates of the points of intersection must satisfy the equation

$$3x^{2} - 2(k+4)x + (k^{2}+6) = 0 \qquad (4 \text{ marks})$$

- (d) Hence find the two values of k for which the line x + y = 2 is a tangent to the translated curve. Give your answer in the form $p \pm \sqrt{q}$, where p and q are integers. (4 marks)
- (e) On **Figure 3**, show the translated curves corresponding to these two values of k. (3 marks)



FP1 Conics Answers

(ii)	$x = \frac{25}{4}$ Equal roots \Rightarrow tangency	Total	E1	2 12	but B0 if other values given as well Accept 'It's a tangent'
(ii)	4			•	but B0 if other values given as well
(ii)	$x = \frac{25}{1}$		21		
	1		B1		No need to mention repeated root,
	10x - 200x + 023 = 0			5	continuingly shown (AO)
	Fractions correctly cleared $16x^2 - 200x + 625 = 0$		ml Al	3	convincingly shown (AG)
(d)(i)			M1		
				-	
(c)	Required tangent is $x = 5$		B1F	1	ft wrong value in (b)
	Intersections at $(\pm 5, 0)$		B1	3	
	Both branches correct		B1		With implied asymptotes
(b)	One branch generally correct		B1		Asymptotes not needed
	$\rightarrow y = \pm 3\sqrt{3}$			5	
	$ \Rightarrow y^2 = 27 \Rightarrow y = \pm 3\sqrt{3} $		A1	3	
			A1		PI
8(a)	$x = 10 \Longrightarrow 4 - \frac{y^2}{9} = 1$		M1		
	2	I			I
		Total		6	
	2 units in positive x direction		A1 A1	4	
(b)	$(x-2)^2 - y^2 = 1$ Translation in x direction	I	M1A1		
	scale-factor $\frac{1}{2}$ parallel to y axis			2	
7(a)	Stretch parallel to y axis		B1 B1	2	
	Otractal as a 11-1 to the	I	D1	1	
]	Fotal		15	
	So line does not intersect curve		A1	3	
(iv)		1	M1A1	-	OE
(111)	x = -6x + 9 = 0 x = 3, y = 6		Al	2	
(iii)	ie if $-48c + 144 = 0$ so $c = 3$ $x^2 - 6x + 9 = 0$		A1 M1	2	
(ii)			M1	2	
	Hence result		A1	3	convincingly shown (AG)
	= 12x		M1		
(c)(i)	$(x+c)^2 = x^2 + 2cx + c^2$		B1		
(ii)			B1	1	
	Equation is $(y-2)^2 = 12x$		B1√	2	ft $y + 2$ for $y - 2$
(b)(i)	<u> </u>		B1	2	
8(a)	Correct at origin		M1 A1	2	
S(a)	Good attempt at sketch	1	M1		

	Total		15	
		B2	3	Curve to right of line Curves must touch the line in approx correct positions SC 1/3 if both curves are incomplete but touch the line correctly
(e)		B1		Curve to left of line
(d)	Tgt $\Rightarrow 4(k+4)^2 - 12(k^2+6) = 0$ $\Rightarrow k^2 - 4k + 1 = 0$ $\Rightarrow k = 2\pm\sqrt{3}$	M1 m1A1 A1	4	OE
(c)	Correct elimination of y Correct expansion of squares Correct removal of denominator Answer convincingly established	M1 M1 M1 A1	4	AG
(b)	Equation is $\frac{(x-k)^2}{2} + y^2 = 1$	M1A1	2	M1 if only one small error, eg $x + k$ for $x - k$
9(a)	Intersections $(\pm\sqrt{2}, 0)$, $(0, \pm 1)$	B1B1	2	Allow B1 for $\left(\sqrt{2}, 0\right)$, $(0, 1)$